18編のアブストラクトが載っています。
1編ごとに本文に引き続き、和訳があります。
モバイルでもご覧になっていただけますが、膨大な文章ですので、
PCで読み込んでいただければと思います。



翻訳: 藤沢 浩二


Worker and consumer exposure issues  18編

1.Occupational Exposure to Isocyanates and Use of Respiratory Protection in the

Car Repair Industry; A Baseline Exposure Assessment 

Erik van Deurssen1,2, Anjoeka Pronk2, Henk Goede2, Erik Tielemans2, Dick Heederik1, Tim Meijster2

1 Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands; 2 TNO, Research Group Quality and Safety, Zeist, The Netherlands.

Corresponding author: Erik van Deurssen, PhD Student, Institute for Risk Assessment Sciences, Utrecht, Netherlands.

erik.vandeurssen@tno.nl

Financial disclosure: Nothing to disclose

Introduction: Occupational exposure to isocyanates has been associated with the development of occupational asthma in various settings, including the car repair industry.

Hardeners of polyurethane (PU) lacquers which are used in base-and topcoats generally contain hexamethylene di-isocyanate (HDI). In the Netherlands approximately 20.000 workers are potentially exposed by performing various isocyanate-related tasks, making this a potential large contributor to the burden of disease.

Respiratory protective equipment (RPE) is currently one of the most important preventive measure used. This study serves as baseline measurement within an intervention study, aimed at reducing the work related exposure to isocyanates among car repair workers.

The aim of this study was threefold: 1) conducting a detailed exposure assessment and determine exposure determinants, 2) evaluating the effectiveness of respiratory protection, and 3) providing input for the development of a broad intervention strategy.

Methods: Inhalation exposure was assessed by personal exposure sampling with midget impingers, containing din- butylamine (DBA) in toluene.

Personal task-based inhalation samples for mixing, spraying and gun cleaning were collected among 37 workers, divided over eighteen companies during spring 2012. Samples were analyzed using the liquid chromatography tandem mass spectrometry (LC-MS/MS) technique, according to the ISO 17734 norm for DBA impinger sampling.

We obtained relevant information regarding potential exposure determinants (i.e. type and location of ventilation, used products, worker orientation towards spraying object) and behavioral and organizational factors by performing a detailed walk through survey and an individual questionnaire.

Descriptive statistics will report on exposure levels, stratified per task and company. Association between exposure and work practices, task time, behavioral factors (e.g. knowledge, awareness, and attitude), and organizational factors (e.g. intensity towards supporting OSH-programs) will be determined using mixed effect regression models.

The level of respiratory protection was assessed by placing cassettes, loaded with glass fiber filters impregnated with 1-(2-methoxypheyl) piperazine (1,2-MP), both in the breathing zone outside the respirator and inside the respirator through an adapter during spraying and gun cleaning activities. These filter measurements were obtained among twenty-two subjects.

Samples were analyzed using LC-MS/MS, according to the ISO 16702 norm for 1,2-MP filter sampling. Additionally, we obtained indicative information on dermal exposure by applying a questionnaire to assess dermal exposure with the so called DREAM approacha.

Results: A dataset was collated containing 145 personal task-based samples and 56 filter measurements (28 outside and 28 inside respirator). Spray painting results in the highest exposure levels compared to mixing and gun cleaning. Both in frequency and concentration, HDI-oligomers (e.g. isocyanurate, biuret, uretdione) are the most dominant compounds compared to di-isocyanates. A full overview of the preliminary results and a first outline of the intervention strategy will be provided during the presentation.

 The use of respirators seems task-dependent, where first analysis seem to indicate that the protection factor is above 90%. Final results about the possible effect of all mentioned determinants will be presented at the conference.

Discussion: Our analyses will provide us information about exposure determinants, respiratory protection and the possible importance of dermal exposure that will be translated into an intervention strategy.

This intervention strategy will be Assembled with information about the effectiveness of current control measures present in some of the work places and also additional generic knowledge on exposure management strategies. Another abstract described the development of a disease model that will eventually be used to perform health impact assessment based on the changes in exposure observed in our intervention study.




1.自動車修理工場でのイソシアネートの職業曝露と呼吸保護器の利用:曝露基準の評価    

緒言:イソシアネートの職業曝露は自動車修理工場など様々なところでの職業喘息の発症と結びついている。

一般的にヘキサメチレンジイソシアネート(HDI)を含む硬質ポリウレタン(PU)ラッカーは台座や上塗りに用いられている。オランダでは約 20,000人の労働者が各種のイソシアネート関連の仕事で曝露され、潜在的に病気の拡大をもたらしている。

呼吸器保護マスク (RPE) は今日使用される最も重要な予防用具の一つである。この研究は介入研究の基準値測定に役立ち、車体修理労働者のイソシアネート暴露の軽減を目的とした。

この研究の目的は3の部門からなる。

1)詳細な暴露評価と暴露要因の究明

2)呼吸用保護マスクの有効性の評価

3)介入戦略の広範な発展のためのインプット

方法:吸入曝露は、トルエン中にジブチルアミン (DBA) を含む小型impingerを用いての個人の曝露サンプリングよって評価した。

混合、噴霧、ガン洗浄に対する個人の作業ベースでの吸入サンプルは2012年の春から18以上の会社に分け37人の労働者から集めた。サンプルはDBA impingerサンプリングのためのISO17734標準に従って液クロマトグラフィーと連結したマススペクトル(LC-MS/MS)法で分析した。

我々は個々のアンケート調査を通しての詳細な作業により潜在的な曝露決定要因 (換気のタイプと場所、中古品、労働者の噴霧目的への姿勢) と行動および組織的要因についての関連情報を得た。

記述統計は、曝露レベルに関し作業および会社ごとの層別解析について報告書する。曝露と実作業、作業時間、

行動要因(例えば、知識、認識度と姿勢)や組織要因(例えばOSHプログラムへの強い姿勢)との関係は回帰モデルを有効に使うことで決定される。呼吸用保護マスクのレベルは、1-(2-メトキシフェニル)ピペリジン(1,2-MP)で浸漬したガラスファイバーフィルターを詰め込んだカセット呼吸器保護マスクを配置することによって評価した。それは噴霧中およびガン洗浄作業中にアダプターを通し保護マスクの内部と外部での両方についてである。これらのフィルターの測定値は22得た。サンプルは1,2-MP フィルターサンプリング用ISO 16702 標準に従いLC-MS/MSを用い分析した。加えて我々は通称DREAMアプローチ呼ばれる皮膚曝露を調査するためのアンケートで皮膚曝露について示唆する情報を得た。

結果: データセットは 145 の個人の作業ベースのサンプルと 56 のフィルター測定値(28の内側と外側の呼吸保護マスク)が集められた。噴霧塗装は混合やガン洗浄に比較して高い被曝レベルであった。

頻度と濃度の両方において、HDIオリゴマー(例えばisocyanurate, biuret, uretdione)はジイソシアネートと比べ最も主要な化合物である。予備的な結果の概要と介入戦略の最初のアウトラインは、プレゼンテーションで提供する。呼吸保護マスクの使用は作業内容に依存すると思われる。そこでは初期分析は保護係数が90%以上と思われる。すべての言及すべき決定要因の可能な効果についての最終結論は会議で発表する。

討論: 我々の分析は曝露決定要因、呼吸用保護マスクおよび皮膚曝露の可能性についての情報を提供し、それは介入戦略の中で具体化されるであろう。この介入戦略は、作業場所での対策の有効性に関する情報として集められ、また曝露管理戦略に関する一般的な知識として加えられるであろう。別のアブストラクトは最終的には我々の介入研究で観察された曝露の変更に基づいての健康影響評価を実行するのに使う疾患モデルの開発について述べた。





 

2.Effectiveness of Educational and Behavioral Interventions to Reduce Isocyanate Exposure in the Auto Body Repair and Refinishing Industry: A Cluster- Randomized Controlled Trial

 Youcheng Liu1, Meredith H. Stowe2, Judy Sparer2, Carrie A. Redlich2

1 Department of Environmental and Occupational Health Sciences, University of North Texas Health Science Center School of Public Health, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA; 2 Occupational and Environmental Medicine Program, Yale University School of Medicine, 135 College Street, New Haven, CT 06511, USA.

Corresponding author: Youcheng Liu, Department of Environmental and Occupational Health Sciences, University of North Texas Health Science Center School of Public Health, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA.

youcheng.liu@unthsc.edu

Financial disclosure: Nothing to disclose

Research Purpose: To better control isocyanate exposure and prevent occupational asthma in the auto body repair and refinishing industry, improved exposure control strategies are needed. We conducted a cluster-randomized controlled trial in this industry. The main objectives were to assess the effectiveness of educational and behavioral interventions on worker knowledge, attitudes, and self-reported and observed behaviors with regard to isocyanate exposures.

Relevance: The study is highly relevant to the conference themes: worker exposure issues.

Participants: 103 workers from 14 auto body shops participated in this study with signed written informed consent. The study was approved by Yale University’s institutional review board, and all work was performed in accordance with Yale University’s rules regarding the ethical conduct of clinical research and protection of human rights.

Methods: Shops with all their participating workers were randomly assigned into the intervention and control groups. The intervention group received both educational training and behavioral feedback process throughout the first 6 months. Original surveys of exposure-related knowledge and attitudes and self reported behavior were administered and actual behaviors were observed at baseline, 6, and 12 months.

Analysis: Data were analyzed using the 2 test and linear modeling, and statistical significance was set at P < 0.05.

Results: Worker knowledge and attitudes improved significantly (p<0.05) in the intervention group [mean change (or improvement) in score 24] compared with control group (mean change in score 4) in the 6-month period.

Self-reported behavior also improved significantly (p<0.05) more in the intervention group (mean change in score 20) compared to the control group (mean change in score 6).

Most improvements were sustained at 12 months. At baseline, knowledge and attitudes were significant predictors of self-reported behavior (p=0.008). In all study periods, knowledge and attitude mean score was also highly correlated with self-reported behavior. Self-reported behavior was highly associated with observed behavior. Over 87% of workers who reported using a respirator for painting were observed to use a respirator, as an example.

Conclusions: Educational training and behavioral feedback improve knowledge, attitudes, and self reported and observed behaviors in auto body workers exposed to isocyanates. Knowledge and attitude survey is a potentially useful tool to characterize auto body worker exposure risk and readiness for behavior change. In this setting training with behavioral feedback did not add significant benefit beyond the educational intervention.

Implications: This study identified effective intervention components in improving worker safety knowledge, attitudes and self-reported behaviors in the auto body repair and refinishing industry. The findings can help increase use of safe work practices. Funding Acknowledgement: This study was supported by CDC/NIOSH grant R5 R01OH004246.

 

 2. 自動車修理・補修工場でのイソシアネート曝露を減らすための教育と行動介入の有効性:クラスター無作為化比較試験      

研究目的:車体の修理・補修工場におけるイソシアネート曝露の有効な制御と職業喘息を防ぐには、曝露制御戦略の改善が必要である。我々はこの業種においてクラスター無作為化比較試験を行った。主な目的は労働者の知識、態度、自己申告についての教育と行動介入の有効性を評価し、そしてイソシアネート曝露に関しての行動を観察することである。

関連性: この研究は本会議のテーマと高い関連性がある。: 労働者の曝露課題

参加者:14の自動車ボディ ショップから 103人の労働者が、同意書に署名しこの研究に参加した。

この研究はすべてエール大学の倫理委員会で承認された研究および臨床研究の倫理と人権の保護に関するエール大学の規則に基づい行った。

方法:参加労働者とショップは、介入グループと対照グループにランダムに割り当てた。介入グループは、最初の 6 カ月間教育訓練とフィードバック行動過程を受けた。曝露関連の知識、態度、自己行動報告の原則的調査がなされ、実際の行動をベースライン時と6、12 ヶ月の行動を観察した。

分析: 2つのテストおよび線形モデリングを使用してデータを分析した。統計的有意性は P < 0.05にセットした。

結果: 労働者の知識と態度は6 ヶ月の期間で、介入グループは [平均的変化 (あるいは改善) スコアが 24]対象グループ(平均的変化スコア 4)と比較して大幅に改善 (p < 0.05)された。自己申告の行動も介入グループ(平均的変化スコア 20) は対照グループ (平均的変化スコア 6)と比較して大幅に改善 (p < 0.05)した。ほとんどの改善は12か月間維持された。

ベースラインにおいて、知識と態度は自己申告行動の予測判断材料であった(p=0.008)。

すべての調査期間で、知識および態度の平均的スコアもまたは自己報告行動と高い相関があった。自己申告行動は観察挙動と深く結びついていた。例として、塗装用呼吸保護マスクの使用の報告で87%以上の労働者に呼吸保護マスク使用が観察された。

結論:教育訓練と行動フィードバックは知識、態度、自己申告を改善し、イソシアネートに曝露される車体労働者の行動を観察した。知識と態度の調査は車体労働者の曝露リスクと行動変化の準備のための潜在的に有用なツールである。フィードバック行動を伴うこの設定されたトレーニングは、教育的介入を超える大きなメリットは加わっていない。

含意: 本調査は、自動車ボディ修理・再生工場での労働者の安全知識・態度・ 自己申告行動改善に効果的な介入要素を示した。この調査結果は安全な作業習慣を促進する助けになる。

謝辞: この研究は CDC/NIOSH 助成金R5 R01OH004246の 付与を受けた。

 



3.Accuracy ofToxicological Information on Material Safety Data Sheets for 

Respiratory Tract Sensitizers and Asthmagens Used in Workplaces in Canada

Gary. M. Liss, MD, MS, FRCPC1, and Martin Nicholas, PhD2

1 Gage Occupational and Environmental Health Unit, Dalla Lana School of Public Health, University of Toronto, Ontario, Canada; 2 National Office of WHMIS, Workplace Hazardous Materials Directorate, Healthy Environments & Safety Branch, Health Canada.

Financial disclosure: Nothing to disclose

Objectives: The Workplace Hazardous Materials Information System (WHMIS) is Canada’s national hazard communication standard for ensuring the protection of Canadian workers from adverse health effects of hazardous materials through the provision of relevant information. Material Safety Data Sheets (MSDSs) are one of the primary means of hazard communication that allow workers to safely use, handle, and dispose of hazardous chemicals. Guidelines and best practices on the investigation of occupational asthma (OA) recommend that clinicians who are investigating adult-onset asthma or possible OA review workers’ exposures including relevant MSDSs. This work examines the accuracy of hazardous information disclosed on MSDS for toluene diisocyanate (TDI), methylene diisocyanate (MDI) and hexamethylene diisocyanate (HDI). Design/Method/Description: 177 MSDSs were selected from 130 different suppliers. The accuracy of hazard information disclosed on the MSDSs was evaluated using an audit form for reviewing parameters such as: respiratory sensitization, asthma and allergic respiratory reaction.

Output/Results: Main results showed the following discrepancies:

 34/177 MSDSs (19.2%) are missing the statement “respiratory sensitization” while more than double this number, 73/177 (41.2%) did not state “asthma” and 93/177 (52.5%) did not state “allergic respiratory reaction.

Impact/outcomes/conclusions/implications:This study reveals discrepancies in MSDSs that may adversely affect the health and safety of Canadian workers, even for a well-recognized sensitizer. Results of the study highlight fundamental issues related to hazard information disclosure that require the attention of  manufacturers and regulators for ensuring the protection of worker health and safety.

Omission or non-disclosure of these agents in MSDSs may limit physicians in making an effective diagnosis of work-related asthma.

Therefore, MSDS compliance is essential to ensure the safe use/handling of respiratory tract sensitizers and asthmagens in Canadian workplaces. Nationally coordinated enforcement, surveillance, and education of suppliers and physicians is needed to address the discrepancies in MSDSs. Such actions will consequently result in safer workplaces in Canada.



 

3.カナダの作業現場で用いられている気道SensitizersとAsthmagensについての製品安全データシートに関する毒性情報の正確度

目的:作業場危険有害性情報システム(WHMIS) は、関連情報の提供を通し有害物質の健康へ被害からカナダ労働者を保護するための国家危険有害性周知基準である。製品安全データシート (MSDSs) は、労働者が安全な使用、取り扱いや有害化学物質の廃棄を決める場合、有害性を知る上での有力な手段の一つである。

職業性喘息 (OA)調査においてのガイドラインと最良の手法は成人発症喘息の研究をするか、あるいはMSDSs関連を含む労働者の曝露のOA評価ができることを臨床医に勧告した。この調査はジイソシアネート(TDI),メチレンジイソシアネート(MDI)とヘキサメチレンジイソシアネー(HDI)用にMSDSに公開されている毒性情報の正確性を調べることである。

デザイン/方法/説明177の MSDSsは130の異なった供給元から選んだ。MSDSs に公開されている危険性情報の正確性の評価には呼吸器感化、喘息、アレルギー性呼吸反応のような評価パラメーターに監査フォーム を使用した。

アウトプット/結果:おもな調査結果は次に示す。

“呼吸器感化”の34/177 MSDSs (19.2%)は間違った報告、一方 “喘息“については73/177 (41.2%)が、”アレルギー性呼吸反応“については93/177 (52.5%)が言及してなかった。

効果/ 結果/結論/影響:この調査はよく認められ増感材でさえたカナダの労働者の安全と健康に悪影響を与える可能性をMSDSs の中での矛盾を明らかにした。調査の結果の強調すべき基本的課題は製造者と労働者の健康と安全の保護を確保するための規制当局に求められる注意の危険性情報開示に関連している。

. MSDSs の中のこれらの薬剤の削除または非開示は職業関連喘息の効果的な診断をするうえでの医療を妨げる。したがって、MSDS コンプライアンスはカナダの職場での上気道増感剤、asthmagensの安全な使用・取扱いを確保するうえで不可欠である。全国的に調整された執行機関、監視、および供給者と医師の教育は、MSDSs の矛盾に対処するため必要である。そのような行動は結果としてカナダのより安全な職場につながる。

 

4. Risk Assessment For Consumer Exposure To Toluene Diisocyanate (TDI) Derived

From Polyurethane Flexible Foam  

Financial Disclosure: Research team includes scientists employed by producers of isocyanates

Polyurethanes (PU) are polymers made from diisocyanates and polyols for a variety of consumer products. It has been suggested that PU foam may contain trace amounts of residual toluene diisocyanate (TDI) monomers and present a health risk.

To address this concern, the exposure scenario and health risks posed by sleeping on a PU foam mattress were evaluated. Toxicology benchmarks for key non-cancer endpoints (i.e., irritation, sensitization, respiratory tract effects) were determined by dividing points of departure by uncertainty factors. The cancer benchmark was derived using the USEPA Benchmark Dose Software. Results of previous migration and emission data of TDI from PU foam were combined with conservative exposure factors to calculate upper-bound dermal and exposures to TDI as well as a lifetime average daily dose to TDI from dermal exposure. For each non-cancer endpoint, the toxicity benchmark was divided by the calculated exposure to determine the margin of safety (MOS), which ranged from 200 (respiratory tract) to 3 x 106 (irritation).

Although available data indicate TDI is not carcinogenic, a theoretical excess cancer risk (1 × 10-7) was calculated. We conclude from this assessment that sleeping on a PU foam mattress does not pose TDI-related health risks to consumers.

 

4.軟質ポリウレタンホームからのトルエンジイソシアネート(TDI)の消費者への曝露リスク評価  

種々の消費材のポリウレタン(PU)はジイソシアネートとポリオールから作られるポリマーである。PUフォームは微量のTDIモノマー残存の可能性があり、健康上リスクがあることが示唆されている。この問題に対応するため、PU マットレスで寝ることによってもたらされる暴露シナリオと健康リスクを評価した。非がん性指標のカギとなる毒性基準(すなわち、刺激、感作性、気道への影響) は不確定要素による境界点のずれにより決定した。がん指標は USEPAベンチマーク・ドーズ・ソフトウエアを用い導いた。PUホームからのTDIの事前の移動と排出データの結果は、生涯平均一日皮膚被曝量と同じくTDI皮膚被曝の上限を算出するための従来の曝露要因と統合された。それぞれの非がん性エンドポイントに対し、毒性ベンチマークは安全限界(MOS)を決める曝露計算よって区分された。それは200 (上気道)から 3 x 106 (刺激) の範囲であった。

得られたデータは、TDIは発癌性がないことを示したが、理論的には過剰な癌リスク (1 × 10-7)が計算された。

我々はこの研究からPUの泡のマットレスで寝る消費者にTDIに関連する健康上のリスクはないと結論づけた。




 

5.Inception Cohort Study of Workers Exposed to Toluene Diisocyanate at a Polyurethane Foam Factory: One Year Follow-up  

Gui W, Neamtiu I, Wisnewski A, Liu J, Gurzau E, Redlich CA

Corresponding author: Wei Gui, Medical Student, Yale University School of Medicine, New Haven, CT, US. wei.gui@yale.edu

Financial disclosure: Nothing to disclose

Research Purpose: This unique inception cohort study at a modern polyurethane foam factory in Romania was initiated to characterize workplace exposures to toluene diisocyanate (TDI) and the health consequences.

 Relevance: Isocyanates, used in the production of polyurethane foam, can lead to asthma. Despite improved controls, workers continue to develop asthma. To date, there are few published longitudinal cohort studies of workers exposed to TDI and the consequences for health.

Participants: Eligible participants included consenting workers at a polyurethane foam factory in Romania between 2010 and 2011. The study was approved by the human subjects review board in Romania and at Yale University.

Methods: Newly hired workers were enrolled and assessed through questionnaire, spirometry, and serum analysis at initial employment and serially at 6 month intervals. Interview-based questionnaires were given to assess baseline demographics, exposure to TDI and changes in respiratory and general health. Spirometry was performed to measure FEV1 and FVC.

Workers’ sera were collected and ELISA antibody assays were performed to detect TDI-IgG and TDI-IgE antibodies. Continuous air monitoring for TDI levels at select locations inside the workplace was instituted upon opening of the factory.

Analysis and Results: 49 workers were initially enrolled with mean age of 39 years, 28 smoked (57.1%), 3 had prior isocyanate exposure (6.1%), and none had a prior asthma. At baseline, 3/42 (7.1%) workers had FEV1/FVC < 0.75. 6 months later, 6/37 (16.2%) had FEV1/FVC < 0.75 and 3/37 (8.1%) had FEV1 decrease of > 10%.

Asthma symptoms were present at baseline in 3/49 (6.1%) workers, at 6 months in 3/42 (7.1%), and at 1 year in 1/37 (2.7%). TDI-specific IgG, negative in all workers at baseline, was detected in 1/39 (2.6%) workers (1:40 serum titer) by 6 months but negative in all workers again at 1 year.

Over the first year, 6 workers resigned and 2 refused follow-up. TDI air levels were below 2.5 ppb. Skin exposure was not assessed, but workers frequently touched recently cured foam with their bare hands.

Conclusions and Implications: One year follow-up of this inception cohort showed no documented cases of TDI asthma in any of the first 49 workers hired in this modern TDI foam factory.

However, several findings suggest early TDI-related health effects in these workers. By 6 months, one worker in the laboratory, who also reported rhinitis-type symptoms, had become sensitized to TDI (positive TDI-IgG titers).

However, at 1 year follow-up, the same worker was working in the human resource department, had negative TDI-IgG titers, and reported no rhinitis-type symptoms.

At 1 year follow-up, one worker had developed newonset symptoms of asthma. In addition, 3 workers had a greater than 10% decline in FEV1, 2 workers developed new airflow obstruction, and 8 workers left or refused follow-up for unclear reasons. Additional follow-up should help elucidate the incidence of TDI sensitization and asthma, and risk factors for development of disease.

Funding Acknowledgement: Yale University Occupational and Environmental Medicine and Yale University School of Medicine Office of Student Research.

 

5.ウレタン工場におけるトルエンジイソシアネートの曝露作業者のコホート調査: 1年間のフォローアップ

目的:このユニークなコホート調査はルーマニアの近代的なポリウレタン工場における作業所でトルエンジイソシアネート (TDI) 曝露と健康への影響を調べるために開始した。

関連:ポリウレタン製造で使用するイソシアネートは気管支喘息を引き起こす。

管理が改善されたにもかかわらず、作業者は喘息を発症続けている。今まで、作業者のTDI曝露 と健康への影響についての縦断的コホート調査はわずかである。

参加者:対象となった参加者は、2010年と 2011 年の間ルーマニアのポリウレタン フォーム工場で同意した労働者である。調査はルーマニアの被験者審査委員会によって承認されエール大学で行った。

方法:登録された新人労働者は雇用の初期と6ヶ月間ごとにアンケート、肺活量測定、および血清分析を行った。インタビュー形式のアンケートで、TDI曝露と呼吸系および健康全般の変化についての統計上の基準値を査定した。肺活量はFEV1 および FVC測定を行った。

労働者の血清を採取し、ELISA抗体検査はTDI IgG とTDI IgE 抗体を検出するために行った。TDI用の大気の連続モニタリングは作業所内の選択した場所で、工場を開く際に行われた。

分析と結果:最初に登録された49人の労働者の平均年齢は39歳、喫煙者28人(57.1%)、3人はイソシアネートの曝露歴を持つ。喘息歴の人はなし。ベースラインで、3/42(7.1%)の労働者はFEV1/FVC < 0.75、6か月後6/37(16.2%)の労働者は FEV1/FVC < 0.75で、3/37(8.1%)の労働者のFEVI(努力性肺活量1秒)が減少した。喘息症状はベースラインで3/49(61%)の労働者が、6か月後3/42(7.1%)、1年後1/37(2.7%)確認された。

すべての労働者のTDI特異IgG値はベースラインで陰性であったが、6ヶ月で1/39(2.6%)の労働者が(1:40 血清力価)を検出した。しかし、一年後すべての労働者が再び陰性であった。

最初の 1年間に、6人が退職した、2人は、フォロー アップを拒否した。TDIは大気レベルで 2.5 ppb 以下であった。肌の露出は評価しなかったが、労働者が頻繁に素手で硬化発泡剤に触れていた。

結論と影響:追跡調査の初期では、近代的なTDI 発泡工場で最初に雇われた49人の労働者のいずれもTDI喘息の確認された例はなかった。

ただし、いくつかの調査結果は、これらの労働者の初期の TDI関連の健康への影響が示唆された。

6 ヶ月で、研究室の一人の労働者が鼻炎型の症状を報告し、TDI (ポジティブな TDI IgG 抗体) に敏感になっていた。ただし、1 年間のフォロー アップで、同じ労働者が人事部で働いたらネガティブのTDI IgG 抗体を持ち、鼻炎型の症状は報告されなかった。

1 年のフォロー アップで1人は、新規の喘息を発症していた。加えて3人の作業者のFEV1は10%以上減少し、2人は新たに気導閉塞になっていた。8人ははっきりした理由なしに辞め、あるいはフォローアップを拒否した。追加フォロー アップは、TDIに対する 感化と喘息の病気発症の危険因子の解明に役立つ。

 


6.Communities Near Toluene Diisocyanate Sources: An Investigation of Exposure and Health 

Lynn Wilder, Agency for Toxic Substances and Disease Registry (ATSDR)

Financial disclosure: Nothing to disclose

Toluene diisocyanate (TDI) is a well-known cause of occupational asthma, but we know little about the potential for exposure and health effects among residents who live near facilities that release TDI. In the mid-1990’s, the North Carolina Department of Health and Human Services and the Agency for Toxic Substsnces and Disease Registry investigated exposures to TDI and health outcomes in one community, which left some unanswered questions. This cross-sectional study evaluated the potential associations between living near a TDI source and the prevalence of three variables: asthma or asthma-like respiratory symptoms, antibodies specific to TDI, and verifiable levels of TDI in residential air. Results among North Carolina residents living near such facilities (five target communities) were compared with the results from residents living further

away (five comparison communities). Overall, the prevalence of reporting either asthma or asthma-like respiratory symptoms was higher (odds ratio = 1.60; 95% confidence interval = 0.97–2.54) among residents in target communities than those in comparison communities. However, this difference was not statistically significant. Symptom prevalence varied greatly among

the community populations. The prevalence of respiratory symptoms was higher near facilities with historically higher TDI emissions. Among the 351 participants who provided blood samples, only one had immunoglobulin G specific antibodies toTDI. This participant lived in a target area and may have had non-occupational exposure. TDI was detected at an extremely low level (1 ppt) in one of the 45 air samples from target communities. One ppt is one-tenth the EPA reference concentration.

Overall, air sample and antibody test results are not consistent with recent or ongoing exposure to TDI.

Participant’s blood samples were also analyzed for hexamethylene diisocyanate (HDI) and diphenylmethane diisocyanate (MDI) antibodies. Two of the five target area participants with diisocyanate antibodies (40%) and four of the 12 comparison area participants with isocyanate antibodies (33%) reported non-occupational exposure to diisocyanates. The exposure sources for

these individuals included spray foam, deck sealant, and auto paint. This finding indicates a need to study the relationships between diisocyanates other than TDI and respiratory health in the general population.

6.トルエンジイソシアネート源近くの地区における曝露と健康調査  

トルエンジイソシアネート(TDI)は、職業性喘息の原因であることはよく知られているが、TDIを排出する施設の近くに住む住民への曝露と健康への影響についてはあまり知られていない。1990年代半ばにノースカロライナ州保健福祉省と環境有害物質・特定疾病対策庁が居住地区におけるTDIの曝露と健康への影響について調査し、若干の問題点を指摘した。

横断的研究はTDI 発生源近くの地区住民と3つの変数(①喘息または喘息様呼吸器症状、②TDIに対する特異的な抗体 ③居住地区でのTDIの検出レベルと有病率)との間の潜在的な関係について検討した。ノースカロライナでのTDI施設近くの居住地区 (5つの対象地区)と施設から遠く離れた居住地区(5つの比較地区)の結果を比較した。

全体的に、喘息や喘息様呼吸器症状の有病率は比較居住地区に比べ対象居住地区の方が高かった。(95%信頼区間= 0.97から2.54オッズ比= 1.60)。しかし、この差は統計的に有意とは言えない。有症状率は地区の人口によって大きく変動した。従来から高いTDI 排出施設の近くは、呼吸器症状の有病率が高かった。血液サンプルを提供した351人の1人だけTDI免疫グロブリンG抗体を持っていた。この参加者は対象地区に住んでおり、非職業性曝露の可能性がある。TDI は対象居住地区からの45の大気サンプルのうち1つが非常に低いレベル (1 ppt)のTDIが検出された。1 ppt は、EPA基準濃度の1/10であった。

全体的にみて、大気サンプルと抗体テスト結果は、直近のあるいは継続TDI曝露と一致しない。また参加者の血液サンプルからヘキサメチレンジイソシアネート(HDI)、ジフェニルメタンジイソシアネート(MDI)、ジイソシアネート抗体についても分析した。対象地区の5人に2人(40%)はジイソシアネート抗体を、比較地区参加者12人中4人(33%)はイソシアネート抗体を持ち、ジイソシアネートの非職業性曝露と報告された

これらの曝露源は、スプレーフォーム、デッキシーラント、自動塗装が含まれている。この調査結果はTDI 以外のジイソシアネートと一般集団における呼吸器系の健康状態との関係を調査する必要性を示唆している。

 


7.A Case Series of Families with Symptoms Associated with Home Polyurethane Spray Foam Insulation 

Redlich CA, Wilson L

Corresponding author: Carrie Redlich, Professor of Medicine, Yale University School of Medicine, New Haven, CT, US.

Financial Disclosure: Nothing to disclose

Relevance / Research Purpose: Polyurethane (PU) spray foam insulation is increasingly being used in residential buildings to improve energy efficiency. The 2-part systems, which contain methelyne bisphenyl diisocyanate (MDI), polyols, catalysts, blowing agents, fire retardants, and related chemicals, are mixed and applied in the home.

We report a case series of 4 families who presented with symptoms associated with PU foam application in their homes. Home air sampling and/or foam chamber studies were performed to better understand the specific chemicals present in the homes and potential health effects.

Participants: The study involved patients who were referred to the Yale Occupational and Environmental Medicine Program for evaluation of home-related symptoms.

Methods / Analysis: Clinical evaluation of the subjects and family members included a careful occupational and environmental exposure history, physical examination and spirometry, and review of relevant home exposures and MSDS sheets. Area air samples were obtained from selected rooms in each house, and also from the chamber head space above foam samples obtained from the homes. Air samples were analyzed for total VOCs, aldehydes, amines, MDI, and other airborne contaminants using standard thermal desorption GC/MS and HPLC-UV methods.

Results: Upper airway, mucosal and CNS symptoms and distinct odors were associated with exposure to the foam. No inhabitants developed new onset asthma or sensitization to MDI.

Total VOCs measured 2 to 20 months after application of the PU spray foam were high, above recommended levels. Specific chemicals identified in the air and chamber samples were consistent with the known components of the PU foam, including amine catalysts, siloxanes, blowing agents, fire retardants, aldehydes and polyols, and persisted for up to 20 months after application. Airborne MDI was not detected.

Three of the 4 families were unable to return to their homes.

Conclusions / Implications: Home PU spray foam can off-gas VOCs, amines and related chemicals for months after home application, and can be associated with distinct odors and persistent symptoms in home inhabitants. How long such foam may continue to off-gas remains unclear.

Funding Acknowledgement: The study was funded by the Yale Occupational and Environmental Medicine Program.

7.ポリウレタン スプレー発泡断熱材に関連する症状を持つ家族の症例

関連/研究目的: ポリウレタン(PU)スプレー発泡断熱材は住宅のエネルギー効率を改善のために使用量は増加している。メチレンビフェニルジイソシアネート (MDI)、ポリオール、触媒、発泡剤、難燃剤、および関連の化学物質を含む系は、家屋に使われている。PU フォーム塗布に関連付けられる症状を呈する4家族のケースについて報告する。室内の大気サンプリングや発泡剤の部屋の調査は、特定化学物質と潜在的な健康への影響をより理解するために実施した。

参加者:この調査には室内の関連症状評価のためのエール労働環境医学プログラムから付託された患者が参加した。

方法/分析: 調査対象者と家族の臨床評価には職業上または環境からの曝露歴、身体検査と肺活量検査、および室内での曝露とMSDSシート(製品安全シート)の関連性検査が含まれている。大気サンプルはそれぞれの家で選択した部屋で、また室内に発砲材のある応接室の上部からも得た。大気サンプルは全VOC、アルデヒド、アミン、MDIおよび他の大気中浮遊汚染物質を昇温脱離GC―MASとHPLC-UV法で分析した。

結果: 上気道、粘膜と中枢神経系(CNS)症状、異臭は発砲材の曝露と関連した。居住者は新たな気管支喘息症状あるいはMDI(憂鬱病)への感作は見られなかった。

PU 泡スプレー塗布後、2から20カ月測定した総揮発性有機化合物は高く、勧告レベル以上であった。大気と室内の試料中に確認された特定の化学物質はPUフォーム中の組成であるアミン触媒、シロキサン、発泡剤、難燃剤、アルデヒド類、ポリオールと一致し、塗布後20ヶ月まで残っていた。浮遊MDI は検出されなかった。

4家族の内3家族は家に戻ることができなかった。

結論/影響: 家庭用PU フォームスプレーは塗布後VOCs、アミン、関連する化学物質は数か月で排出でき、居住者における異臭と症状の持続性は関連づけることができる。残りがどのくらい排出し続けるかは明確ではない

資金と謝辞:この研究はヤール大学職業・環境医学プログラムの資金で行った。




 

8.Determination of Aromatic Amines in Aqueous Extracts of Polyurethane Foam  

Dalene M.1,2, Riddar J. 1, Karlsson D.1,2, Skarping G.1,2,

1 Work Environment Chemistry, Stockholm University, Hassleholm, Sweden; 2 Institutet For Kemisk Analys Norden AB, Hassleholm, Sweden. Corresponding author: Marianne Dalene, Associate Professor, Work Environment Chemistry, Stockholm University, Hassleholm, Sweden. marianne.dalene@anchem.su.se

Financial Disclosure: Nothing to disclose

Background: During the production of polyurethane (PUR) foam, water is nowadays being used as a blowing agent. Water reacts with the isocyanate to create carbon dioxide gas, which fills and expands cells created during the mixing process.

In addition to carbon dioxide, the to isocyanates corresponding amines are formed. The amines mainly react further with isocyanates to substituted urea compounds. Aromatic amines, such as toluene diamine (TDA) and methylene diphenyl diamine (MDA) can be found in extracts from different PUR products. 2,4-TDA and 4,4’-MDA are listed as possible human carcinogens and can readily be absorbed through the skin.

Objective: To develop methods for the determination of extractable aromatic amines and related compounds in flexible PUR foam. Evaluation of extraction parameters and different derivatisation techniques for the extracted amines were performed. The methods were applied to commercially available flexible foam products. Further, the possibility to analyse aqueous extracts containing free underivatised aromatic amines using Hydrophilic interaction liquid chromatography (HILIC) was investigated.

 Methods: PUR foam was extracted using 0.1% (w/v) aqueous acetic acid (HAc). Extraction solutions were analysed and aromatic amines were determined as ethyl chloroformate (Et) and pentafluoropropionic acid anhydride (PFPA) derivatives. The determinations were performed using LC-MS. Extractable aromatic amines were also studied using HILIC and LC-MS.

 Results: Using trideuterium labelled TDA as internal standard, linear calibration curves were obtained in the range of 0.01–0.50 g ml−1 (n = 7), with correlation coefficients >0.999 for the PFPA and Et derivatives.

The detection limit was 2 pg of TDA for the Et derivatives and 0.1 pg for the PFPA derivatives. The relative standard deviation (R.S.D.) for determination of TDA as PFPA derivatives in foam extraction solutions were 13%. LC–MS determination of PFPA derivatives was more selective, as compared to LC–MS of Et derivatives. In foam extraction solutions, 2,4- and 2,6-TDA, several isomers of MDA and dimers of TDA/TDI were observed. Hydrolysis of the extraction solution revealed a large pool of TDA/TDI compounds and oligomers.

The concentration of TDA in foam was affected by the extraction media, temperature and duration. The choice of derivatisation procedure also affected the determination of TDA.

In extraction solutions from six different commercially available flexible foam qualities 2,4- and 2,6-TDA were found in the range of 0 – 7 and 0 – 6 g g−1 foam, respectively. Agreement was observed between the results of analyses of PUR foam extracts by HILIC–MS/MS and results obtained by ethyl chloroformate derivatisation and reversed phase (RP) LC–MS/MS. When flexible foam was heated, considerable higher concentrations of TDA were observed.

 Conclusion: Determination of TDA and MDA in PUR foam extraction solutions at ng ml−1 has been made possible. In commercially available flexible foam products, concentrations of extractable TDA above 1 ppm (g g−1) were found.

Considerable higher concentrations of extractable TDA were found when foam samples had been subjected to heat. Soft hydrolysis of the extraction solution revealed a large pool of TDI/TDA compounds and oligomers.


8.ポリウレタンフォームの水溶抽出物中の芳香族アミンの測定

背景:ポリウレタン(PUR)フォームの製造において最近水を試薬としていられている。水はイソシアネートと反応して炭酸ガスを生成し、混合プロセスを通し、膨らませ拡張セルを作る(PUR)。さらに炭酸ガスの発生は、イソシアネートに相当するアミンを形成する。アミンの大部分はイソシアネートと反応し置換尿素化合物となる。

トルエンジアミン(TDA)やメチレンジフェニルアミン(MDA)のような芳香族アミンは異なったPUR製品からの抽出物中に見られる。2,4-TDA と 4,4’-MDAは発がん物質として記載されており、皮膚から容易に吸収する。

目的:この研究の目的は軟質PURフォームから抽出されたアミンや関連化合物の測定法の開発である。抽出されたアミン類に対する抽出パラメーターと異なる誘導体化法の評価を行った。方法は市販の柔軟性発砲剤(フォーム)を適用した。さらに親水性相互作用クロマトグラフィー(HILIC)を用い、フリーの非誘導性派生の芳香族アミンを含む水溶抽出物分析の可能性を検討した。

方法:PURフォームは0.1%(w/v)の酢酸水溶液(HAc)で抽出した。抽出溶液は分析し、芳香族アミンはエチルクロロギ酸エステルと無水ペンタフロロプロピオン誘導体として測定した。分析はLC-MSで行った。抽出された芳香族アミンもまたHILIC と LC-MSを用いてで行った。

結果:内部標準として重水素TDAを用いた。PFPA とEt誘導体に対し 0.01–0.50 g ml−1 (n = 7)の範囲で直線の検量線が得られた相関係数は0.999以上であった。

検出限界はEt誘導体に対し2pgDTA,PEPAにたいしては0.1pgであった。フォーム抽出溶液中のPFPA誘導体としてのTDA測定での相対標準偏差(R.S.D.)は13%.

PFPA誘導体のLC–MS測定はEt誘導体のLC–MSと比べてより選択性があった。抽出溶液中には2,4-および2,6-TDA、MDAの数種の異性体およびTDA/TDIの2量体が観測された。抽出溶液の加水分解はTDA/TDI

化合物とオリゴマーの大容量希釈と関連した。フォーム中のTDA濃度は抽出媒体、温度、希釈度に影響される。誘導体を作る方法の選択もまたTDAの測定に影響する。

6の異なった市販の柔軟フォームからの抽出溶液中に2,4- と2,6-TDAはそれぞれ0 – 7 and 0 – 6 g g−1の範囲であった。HILIC–MS/MSによるPUR抽出物の分析結果とエチルクロロギ酸エステルと逆相(RP) LC–MS/MSで得られた結果は一致した。柔軟フォームは加熱されたとき高い濃度のTDAが観測された。

結論:PURフォーム抽出溶液中のTDA と MDAの分析はng ml−1で可能であった。市販の柔軟フォームの製造において1 ppm (g g−1)以上の抽出可能なTDA濃度が観測された。相当高濃度の抽出可能TDAはフォームのサンプルを熱したときに見られた。抽出溶液のソフトな加水分解は大容量希釈のTDI/TDA化合物とオリゴマーで明らかにした。



 

9.Characterizing Relative Exposures to Isocyanates across the Lifecycle of

Polyurethane Products

Charles Bevington, Andrea Pfahles-Hutchens, Carol Hetfield

Corresponding author: Charles Bevington, Environmental Protection Agency, Washington, DC, US. Bevington.

Charles@epa.gov

Financial disclosure: Nothing to disclose

Isocyanates are used in a wide variety of polyurethane (PU) products, including manufactured articles such as cushions and mattresses, or formulated product mixtures, such as spray foams, coatings, adhesives, sealants, and some elastomers. EPA’s Chemical Action Plans on MDI and TDI focus on formulated product mixtures that are typically reacted on-site. Across a product’s life-cycle, workers, building occupants, hobbyists, bystanders, or consumers may be exposed. The PU product lifecycle can be generally characterized as chemical ingredient manufacturing; product formulation; processing, including product mixing and application; use; and disposal. The PU product lifecycle may also include thermal or product degradation during product use and end-of-life stages.

Given the complex nature of polyurethane product formulations and the wide variety of product use patterns, the use of a set of uniform criteria could help determine where exposure studies would be helpful in characterizing the potential for exposures. A screening-level approach using readily available information could inform a prioritization approach to focus future data needs and to specifically target product/chemical/scenario combinations that may present the potential for higher exposures. For example, products that are spray applied, heated, used in large amounts, used often, or which routinely contact skin may have higher exposure potential that those products that are not.

A comprehensive list of possible criteria for consideration will be presented in the poster. For illustrative purposes, the following examples of information could serve as the basis of exposure assessment criteria for formulated PU product mixtures: method of application, product formulation and weight fraction, amount of product used, typical frequency and duration use patterns, physical form, curing times, and emission profiles.

Additional qualitative information could also be considered, including whether exposures to bystanders is possible, the role of thermal degradation resulting from routine use or disposal activities, the level of protection available during typical uses (ventilation, clothing and protective equipment), whether skin contact with the product is part of typical use patterns, and whether other chemicals in the formulation would present similar exposure or health concerns. The intent of this poster will be to illustrate the importance in using consistent descriptions of PU product categories along with consistent descriptions of tasks and/or processes throughout a product’s lifecycle, coupled with use of information criteria across these categories, to further inform where additional data or information is needed to better understand exposures. Feedback, such as the relative importance of certain criteria over others, will be helpful in refining this approach. EPA information gathering authorities provided under the Toxic Substances Control Act (TSCA) are cited in EPA’s MDI and TDI Chemical Action Plans. Exposure studies such as air monitoring, dermal studies, chamber testing, industrial hygiene, epidemiology, and biomonitoring are of interest. This poster will also present a list of different kinds of exposure studies that would be of interest for certain PU product use categories.

 

9. ポリウレタン製品のライフサイクルにおけるイソシアネート曝露の特性調査

イソシアネートはクッション、マットレスなどの製品や発泡剤、コーテイング材、接着剤、シール剤やエラストマーのような混合製品を含むポリウレタン(PU)製品の広い分野に用いられている。MDIとTDIに関するEPAの化学アクションプランは通常現場で反応する混合製品に焦点を当てた。製品のライフサイクルを通し作業者、ビル居住者、趣味人、傍観者あるいは消費者は曝露の可能性がある。

PU製品のライフサイクルは一般に化学材料製造;製品化;加工;混合と活用;使用;廃棄処分として特徴づけることができる。PU製品のライフサイクルには熱あるいは製品使用の過程や最終寿命時での劣化も含む。

統一基準セットの使用は、ポリウレタン製品の複雑な性質やさまざまな製品の使用パターンを考えると、曝露の可能性を特徴付ける場所を決める助けとなる。

容易に入手可能な情報を使ってのスクリーニングレベルへのアプローチは、将来のデータニーズに焦点をあて、特別な製品/化学薬品/高い曝露の可能性のある組み合わせに優先的なアプローチへ情報を提供することができる。たとえば、スプレー、加熱、大量使用、高い使用頻度、または日常的に皮膚に接触する製品は高い曝露の可能性があるかないか、考慮すべき可能な総合的な基準リストはポスターに示した。

説明のために情報の次の例は、PU 混合物の暴露評価基準の基礎として役にたつ。例えば、活用方法、製造法と留分の重量、使用量、通常の頻度と使用の継続性、物理的形態、硬化時間、排出プロヒールなど。第三者への曝露がありうるか、日常的な使用あるいは廃棄処分のでの熱分解の役割、典型的な使用法(換気、被服、防護器具)で保護レベルが得られるかどうか、製品との皮膚接触が典型的な使用パターンの一部となっているかどうか、製剤中の他の化学物質の存在が同じように曝露や健康に関係があるかどうかなど定性的情報の追加も考慮することができる。

このポスターの意図はPU 製品の種類とライフサイクルプロセスについての一貫した記述の重要性を説明することであり、製品種類全般の情報基準の使用と相まって、曝露をよりよく理解するさらなる追加のデータや情報の重要性を説明することである。他の全般の一定基準の相対的な重要性のような評価は、このアプローチを精査するうえで参考になるであろう。EPA 情報収集機関は有害物質制御法 (TSCA) に提供し、EPA の MDI、TDI 化学行動計画に挙げられる。

大気モニタリング、皮膚に関する研究、チェンバー試験、産業衛生学、疫学、バイオモニタリングなどの曝露の研究は価値がある。このポスターは特定の PU 製品種に関心示す異種の曝露研究の一覧も表示する。

 


10.An Inhalational Study of Gorilla Glue

Michael J. McCoy, Cynthia Boyd, Kim E. Anderson

Corresponding author: JCynthia Boyd, GZA GeoEnvironmental, Inc., 20900 Swenson Dr., Suite 150 Waukesha, WI 53186

Cynthia.Boyd@gza.com

Financial disclosure: Members of research team employed by industry

Research Purpose: Methylene bisphenyl isocyanate (MDI) is one of several isocyanates used in a variety of consumer products. An expandable polyurethane adhesive, Gorilla GlueR (Gorilla Glue), contains a mixture of polymeric and monomeric MDI and is designed as a waterproof adhesive for consumer use.

Objective: The objective of this study was to measure the airborne MDI vapor or aerosol concentrations and related potential exposure when MDI- and polymeric MDI (PMDI)-based Gorilla Glue is manually applied by a consumer.

Methods: A work practice simulation study using Gorilla Glue, while quantitatively evaluating airborne concentrations of MDI during standard and hypothetical maximal worst-case consumer use, was conducted.

Results: Laboratory analysis for monomeric MDI and PMDI (oligomeric) revealed airborne concentrations that were below the limit of analytical detection of 0.0005 milligrams of MDI per cubic meter of air (mg/m3) during standard and worst-case use of Gorilla Glue. Increasing the mass of glue, the time when the entire surface area of the glue was exposed to ambient conditions prior to clamping of the material being glued, and the surface area to which the glue was applied (furring strips and plywood ) did not impact the airborne MDI concentrations.

Funding Acknowledgement: Mr. McCoy, Ms. Boyd, and Dr. Anderson are employed as consulting toxicologists for GZA GeoEnvironmental, Inc. This work was funded by Gorilla Glue, which provided no substantive direction to the authors in the study’s design, execution, data analysis and preparation for publication.

 

10.ゴリラ接着剤の吸入に関する研究

資金公開: 工場委託の研究チーム

目的:メチルビスイソシアネート(MCI)は様々な消費財に使われているイソシアネート類の一種である。

膨張性ポリウレタン接着剤、Gorilla GluseR(gorilla Glie)はポリマーとモノマーのMDI混合物を含み消費者用の防水用接着剤として設計されている。

目的: この研究の目的は、MDIと高分 MDI PMDI ベースの接着剤を消費者が使用したとき、浮遊 MDI 蒸気またはエアロゾル濃度と潜在曝露の関係を調べることである。

方法: Gorilla接着剤を使用時における作業の実践的シミュレーションは消費者が使用する標準的な場合と最悪の場合を想定して、MDI の浮遊濃度を定量的に測定しながら行った。

結論:単量体MDI と PMDI (オリゴマー)の浮遊濃度は、Gorilla Glueを使用の標準の場合と最悪の場合で MDI (mg/m 3) の空気 1 立方メートル当たり 0.0005 ミリグラムで検出限界以下であった。

接着剤の使用量を増加させ表面全体に接着の場合と接着表面全体が以前の状態の接着での (下地材と合板)の場合では浮遊MDI 濃度に影響はなかった。

研究資金謝辞: この研究はGorilla Glue社が資金を提供した。研究計画、実行、データ解析、公表について著者への実質的指示はなかった。




 

11.Biological Monitoring for Isocyanates in the UK

John Cocker & Kate Jones

Corresponding author: John Cocker, Head of Biological Monitoring, Health & Safety Laboratory, Harpur Hill, Buxton, SK17 9JS,

UK. john.cocker@hsl.gov.uk

Financial disclosure: Nothing to disclose

Introduction: Isocyanates are reactive chemicals and thousands of workers may be exposed to them during their manufacture and use.

 They are sensitisers and a major cause of occupational asthma in the UK. The UK Workplace exposure limit (WEL)1 or all isocyanates is 20 μg NCO/m3 for an 8h time weighted average (TWA) but this is not health-based and the onus on employers is to reduce exposure as low as reasonably practical.

The American Conference of Governmental Industrial Hygienists have recently proposed lowering the TLV (8h TWA) for toluene diisocyanate (TDI) to 7 μg/m3 (3.4 μg/m3 as NCO) and added a ‘skin’ notation to signify significant potential for dermal absorption. Reducing exposure reduces the risk but even at this level a risk of respiratory sensitisation may remain (ACGIH 2010)2. Reliance on respiratory protective equipment (RPE)

together with the ‘skin’ notation points to a need for biological monitoring (BM) to help assess exposure and the efficacy of control measures, including behaviour

Methods: The Health & Safety Laboratory uses biological monitoring for hexamethylene diisocyanate (HDI), toluene diisocyanate (TDI), isopherone diisocyanate (IPDI) and methylenediphenyl diisocyanate (MDI). The method is based on the analysis of hexamethylene diamine (HDA), toluene diamine (TDA), isopherone diamine (IPDA) and methylenediamine (MDA) released by hydrolysis of conjugates in urine samples collected at the end of exposure3.

In 2005 HSE proposed a biological monitoring guidance value (BMGV)4 of 1 μmol of isocyanate-derived diamines/mol of creatinine in end of exposure urine samples. The BMGV is based on the 90th percentile of data from over 1000 samples collected in studies of workplace exposure. The BMGV is not health based and exceeding it simply triggers an investigation of controls.

Since then BM has been used in a wide range of workplace studies looking at exposure to isocyanates in polyurethane manufacture5,6 and paint spraying。BM has found particular use as a simple exposure assessment technique for workers spraying isocyanates-based paints in motor vehicle repair7. The utility of BM to assess exposure was promulgated in the Health & Safety Executive led Safety and Health Awareness days (SHADs) around the UK. Data from samples collected after the SHADs and from repeat sampling of individuals shows lower levels of exposure suggesting behavior has changed. BM has now been adopted by the industry as an easy way to demonstrate control of exposure7

Conclusions: There is a substantial body of work demonstrating the utility of biological monitoring as a tool to assess exposure and the efficacy of controls including how they are used in practice. Non-health-based biological monitoring guidance values are a pragmatic approach to target when and where further action is required.

11.英国におけるイソシアンネートの生化学的モニタリング

イソシアネートは化学的に活性であり、何千もの労働者がそれらの製造や使用の際曝露されている可能性がある。それらは感作性であり英国の職業的喘息の主要源である。

英国の職場暴露限界(ウェル)1、あるいは全イソシアネートは8時間の加重平均(TWA)で 20 μ g/m (TWA)である。しかし、これは健康基準ではない、雇用者の責任で理想的な低濃度の曝露に削減することだ。米国産業衛生専門家会議は最近トルエンジイソシアネート (TDI)を 7 μ g/m 3 (3.4 μ g/m 3 NCO)に下げることを提案し、皮膚吸収の可能性の表記を追加した。曝露を減らすことでリスクが軽減されるが、このレベルでも呼吸器感作性のリスクが残る (ACGIH 2010) 2.

皮膚への注記とともに呼吸保護器 (RPE)への信頼度は曝露評価と行動を含む有効な対策を立てるために生化学的モニタリング (BM) の必要性を指摘している。

方法:健康と安全研究室はヘキサメチレンジイソシアネート(HDI),トルエンジイソシアネート(TDI),イソフェロンジイソシアネート(IPDI),メチレンジフェニルジイソイアネー(MDI)に生物的モニタリングを用いた。

方法は、曝露3の終わりに集めた尿中での加水分解で生成するヘキサメチレンジアミン(HAD),トルエンジアミン(TDA),イソフェロンジアミン(IPDA)とメチレンジアミン(MDA)を分析のベースにした。

2005 年に、HSE は、生化学的監視指針値 (BMGV) 4 として尿サンプルのイソシアネート誘導体のクレアチニンのジアミン/mol 濃度 1 μmol を提案した。

BMGV は、職場での曝露の調査で収集された 1000以上のサンプルから 90 パーセンのデータに基づいている。BMGV は健康基準ではなく、規制のための調査の引き金になる。

それ以来BM はポリウレタン工場5、6 とペンキの噴霧現場でのイソシアンネート曝露調査に広い範囲で使用されている。 BMは、自動車再生工場7におけるイソシアネートベースの塗装作業者向けの簡単な曝露評価法として活用さられた。曝露評価のBMの有効性は英国の健康と安全局およびSHADによって公布された。 SHADs 後収集されたサンプル、個々の繰り返しサンプルのデータは低いレベルの曝露を示した。BM は今日exposure7 の制御を示す簡単な方法として業界で採用されている。

結論: 露出の評価と実際の規制の有効性を評価するツールとして生化学的モニタリングは有用である。非健康ベースの生化学的モニタリングガイダンス値は、いつでも、どこでも求められる実用的なアプローチである。

 


12.Lessons from Participatory Action Research in an Isocyanate Foam Facility

Andrew Comai1 and Judith Daltuva2

1 International Union, UAW, 8000 E. Jefferson, Detroit MI, 48214 Tel: 313-926-5563 acomai@uaw.net

2Research Area Specialist, Int., Environmental Health Sciences, University of Michigan School of Public Health, 1415

Washington Heights, M6234, Ann Arbor, MI 48109-2029, Tel: 734-936-0756. jdal@umich.edu

Corresponding Author: Andy Coamai, International Union, UAW, 8000 E. Jefferson, Detroit MI, 48214 Tel: 313-926-5563

Purpose: Isocyanate exposures were a primary concern for workers in a small automotive parts plant. This presentation will report on a Participatory Action Research (PAR) method used to uncover and address these worker concerns through Joint Health and Safety Committee activities. These activities include chemical substitution, engineering controls, training and personal protective equipment.

Background: The Study plant used TDI and MDI in the production of automotive foam parts. Approximately 250 hourly employees were involved direct production and 86 employees involved in engineering and management. A number of exposure issues were identified by union health and safety inspectors in 2001-2002. In 2003 the research team from the University of Michigan School of Public Health began a study using the Participatory Action Research (PAR) method.

Methods: Focus groups and plant wide Surveys were conducted in 2003, 2004, and 2005. These were directed by a Joint Labor Management committee. When the primary concerns for workers were identified actions plans were developed. U of M researchers observed meetings assisted in constructing surveys and compiled data. Action plans were tracked for three years. An Institutional Review Board oversaw the research project.

Findings: Issues related to isocyanates were the top health concern. In preliminary questionnaires respondents included air quality, ventilation, exposure to chemicals among the highest priorites. The qualitative comments were extremely helpful in motivating change. (e.g. “Nobody’s lungs are like they were, before they started working here.” “They have robbed us of good health”). Answers to survey questions were also analyzed across job task to look for trends. A respiratory symptom survey reported statistically significant differences in levels of health effects among the 10 different production lines. (Persistent Cough F=1.781,sig.058; Chest Tightness F=1.879,sig.043).

While ergonomic related soft tissue injuries were a primary concern reflected in the OSHA 300 log, surveys indicated an underlying and heretofore undetected level of respiratory illness. Exposure issues included inappropriate ventilation design at pouring stations and unloading stations. Skin exposures were identified during unloading and trimming operations involving partially cured product. Maintenance activity exposures included cleaning molds, heat gun use for cleaning pour nozzles, filter changes, chemical storage and transfer of bulk materials. Industrial hygiene staff from the union assisted in hazard identification and local exhaust design recommendations to provide improved enclosures and point source local exhaust ventilation.

Funding Acknowledgement: The program was funded by National Institute for Environmental Health Sciences Grant No.5U45ES006180

 

12.イソシアネート フォーム施設における参加型研究活動からの教訓

目的:イソシアネートの曝露は、小さな自動車部品工場での労働者にとっての最大の関心事である。このプレゼンテーションは、健康と安全委員会の活動とジョイントし、労働者の懸念に対処するための参加型研究活動 (PAR)についての報告である。これらの活動には、化学的解析、技術管理、訓練および個人保護器を含む。

背景:この研究場所は、自動車用発泡体部品の生産で TDI、MDI を使用している。およそ常時 250人の従業員が直接製造にかかわっており、86人はエンジニアリングとマネジメントに関与している。曝露をこうむる幾人かは2001-2002 年労働組合の健康及び安全性の検査官によって特定された。2003 年には、ミシガン大学公衆衛生大学院の研究チームが参加型研究活動 (PAR)方法を用いて調査を始めた。

方法: グループと設備調査は 2003年、2004 年と 2005 年に焦点を当て行った。これらは労使委員会によって指導された。労働者の主な懸念事項が特定されたとき行動計画が進展された。M U 研究者は調査を構成する会議を観察しデータをまとめた。行動計画は3 年間追跡した。施設内倫理委員会はこの研究プロジェクトを監督した。

所見: イソシアネートに係る問題は、健康上の最大の懸念であった。予備アンケートの回答には、空気の質、換気、優先的化学物質への暴露が含まれている。定性的コメントは動機を与える点で非常に良かった。(e.g. “Nobody’s lungs are like they were, before they started working here.” “They have robbed us of good health”).アンケートの質問への回答について傾向を見極めるための調査も行った。

呼吸器症状調査では、10の異なる生産ラインの間で健康への影響レベルで統計的有意差を報告した。(持続性咳F=1.781,sig.058; 胸部圧迫感F=1.879,sig.043)

人間工学にかかわる軟部組織の病症は OSHA300 ログに反映される最重要事項であり、調査では、基本的にこれまで検出されないレベルの呼吸器疾患を示唆した。曝露の問題には、注入工程と徐荷工程での不適切な換気設計が含まれていた。皮膚曝露は、一部硬化製品の徐荷や整形作業を通して確認されまた。維持管理活動の曝露には、鋳型洗浄、注入ノズル洗浄用ヒートが、フィルターの変更、化学物質の貯蔵、一部硬化製品の移動が含まれる。労働組合からの労働衛生スタッフは有害性物質の特定と局所排気装置の位置と包囲の改善のための設計を提唱した。

資金の謝辞: このプログラムは国立環境健康科学研究所の助成金No.5U45ES006180により実施した。




 

13.Adsorption Efficiency of Respirator Filters Cartridges For Isocyanates

Dalene M.1,2, Skarping G.1,2, Gustavsson M.2, Karlsson D.1,2, Tveteras B.O.3

1 Work Environment Chemistry, Stockholm University, Hassleholm, Sweden; 2 Institutet For Kemisk Analys Norden AB, Hassleholm, Sweden; 3 Total E&P Norge AS - Stavanger – Norway. Corresponding author: Marianne Dalene, Associate Professor, Work Environment Chemistry, Stockholm University, Hassleholm, Sweden. marianne.dalene@anchem.su.se

Financial disclosure: Nothing to disclose

Objective: In the petroleum industry climate conditions vary greatly between different outdoor work places in e.g. arctic or tropical places. There is therefore a need to test respirator filters for isocyanates at different temperatures and humidity.

Methods: Respirator filter cartridges were exposed to controlled atmospheres of isocyanates, in an exposure chamber. The exposure concentrations were between 100-200 ppb (25 oC and 35 oC, duration 48h and 96h, RH 20 and 80%) for isocyanic acid (ICA) and methyl isocyanate (MIC) and for hexamethylene diisocyanate (HDI) and isophorone diisocyanate (IPDI) the exposure concentrations were between 4-20 ppb (25 oC, duration 16h and 120h, RH 60 and 80%).

ICA and MIC were continuously generated by thermal degradation of urea and dimethyl-urea and HDI and IPDI were continuously generated by wet membrane permeation.

 Real time monitoring was performed by proton transfer reaction mass spectrometry (PTR-MS). For ICA and MIC breakthrough of the filter cartridges was studied by collecting air samples at the outlet using impinger flasks or dry samplers, using di-n-butylamine as derivatisation reagent, then analysed by LC-MS/MS. HDI and IPDI were analysed after hydrolysis as HDA and IPDA in 8 different layers of the respirator filters. HDA and IPDA were determined after derivatisation with pentafluoro propionic anhydride followed by LC-MS/MS analysis.

Results: ICA and MIC were efficiently absorbed in the two filter types studied and there was no trend of impaired performance throughout exposure tests, even when the filters were exposed to high concentrations (about 200 ppb) for 96 h.

The isocyanates were efficiently absorbed with only a limited breakthrough. The major parts of HDI and IPDI (>90%) were absorbed in the two top layers of the adsorbent filter, but HDI and IPDI penetrated further down in the respirator filters during 120 h of exposure as compared to 16h exposure

Conclusions: The thermal degradation of urea and dimethyl urea enabled the continuous generation of stable air concentrations of ICA and MIC and PTR-MS enabled direct and continuous monitoring of isocyanates.

In the breakthrough tests, the two respirator filters protected efficiently against ICA and MIC and even for filters pre-exposed (48 h) to high concentrations (100-200 ppb) of ICA and MIC.

 The hydrolysis of activated carbon from exposed filters can be used determine the hydrolysis products of HDI and IPDI in the filters. With time, the penetration reached further down in the filters. There is a strong indication that the filters efficiently absorb HDI and IPDI for concentrations relevant for working life.

13.イソシアネート用呼吸保護マスクフィルターカートリッジの吸着効率

目的:石油産業で屋外作業場での気候条件は例えば厳冬下と熱帯下で大きく異なる。従って温度や湿度の違いに対応する呼吸保護フィルターのテストが必要になる。

方法:保護マスクフィルターカートリッジは曝露チェンバー中でイソシアネートがコントロールされた雰囲気下に置かれた。

曝露濃度はイソシアン酸(ICA)とメチルイソシアネート(MIC)に対し100-200 ppb (25 oC と35 oC, 48hと 96h, RH 20 と 80%)、ヘキサメチレンジイソシアネート(HDI)とイソホリンジイソシアネート(IPDI)に対し4-20 ppb (25 oC, 16h と120h, RH 60 と 80%)であった。 ICAとMICは尿素とジメチル尿素の熱分解で発生し続けた。HDIとIPDIは湿った膜を透過することにより発生し続けた。

リアルタイムのモニタリングは、プロトン移動反応質量分析計 (PTR-MS) によって行われ、フィルターカレッジを通過したICA と MICについては誘導試薬としてジ-n-ブチルアミンを用い、impingerフラスコかドライサンプラーで出口で集めた大気サンプルを調べた。それからLC-MS/MSで分析した。HDIとIPDIは加水分解でHDA とIPDAとして保護マスクフィルターの8つの異なった層の中を分析した。HDA と IPDAは無水ペンタフロロプロピオン酸(pentafluoro propionic anhydride)で誘導化体し、LC-MS/MS分析を行った。

結果:ICA と MICは二つのタイプのフィルターで効率よく吸着され、フィルターは高濃度(約 200 ppb、 96 h)にさらされていたが曝露テストの間低下傾向は示さなかった。イソシアネートは限定された中で効率的に吸着された。HDI と IPDIの大部分(>90%)は吸着フィルターの2つの上部層に吸着された。しかし、HDI と IPDIは120時間の曝露で16時間の曝露と比較しさらに保護フィルターの下層部まで浸透していた。

結論:尿素とジメチル尿素の熱分解は安定したICA と MICの大気濃度で発生し続けることが可能で、PTR-MSはイソシアネートを直接、連続的なモニタリングが可能である。ブレークスルーテストで二つの保護フィルターはICA と MICの高濃度(100-200 ppb)下でのフィルターの予備曝露(48h)でもICAとMICに対し効率よく保護した。暴露されたフィルターからの活性炭はフィルター中のHDI と IPDIの加水分解生成物の測定に有効である。

時間とともにフィルター内部まで浸透する。フィルターは作業時間に関係するHDI と IPDIに対し効率的な吸着濃度があることを示している。




 

14. A Review of Airborne MDI Concentrations in the Breathing Zone of Spray Polyurethane Foam Installers Including Adjacent Work Areas at Specific Distances from the Applicator as well as Post Spray Characterization of MD

Scott Ecoff, Bill Robert

 Corresponding author: Scott Ecoff, Sr. Industrial Hygieniest, Bayer MaterialScience, Pittsburgh, PA, US. scott.ecoff@bayer.com

Financial disclosure: Scientists employed by company producing isocyanates.

Spray Polyurethane Foam (SPF) is made by mixing and reacting chemicals to create an insulation product. The typical SPF system is comprised of an “A” side and a “B” side which, when combined, form polyurethane foam within a few seconds.

The “A” side material, polymeric methylene diphenyl diisocyanate (pMDI) is the focus of this poster. Polymeric MDI contains approximately equal amounts of monomeric MDI (predominantly 4,4’-MDI), a chemically bonded two ring structure, and higher molecular weight oligomers of MDI (three-ring bonded structures and larger). This paper will summarize worker exposure monitoring data for airborne MDI found in the open literature and from ongoing Product Stewardship work. The poster will include a summary of the following information:

• Airborne MDI concentrations found in the breathing zone of SPF applicators during spray activities

• Airborne MDI concentrations as a function of distance away from the applicator during spray activities

• Airborne MDI concentrations after active SPF application has been completed

It is common for other construction trades such as carpenters, electricians, plumbers, and other trade workers to be on site during SPF application.

 The potential for exposure to airborne MDI to other construction trade workers has not been well characterized. The majority of the data cited in this poster is from a paper titled “The Current MDI Industrial Hygiene Data on Spray Foam” presented by Mark Spence, Spence Consulting LLC, at the CPI Polyurethanes 2009 Conference. The list of references used by the author to write this paper is attached to the abstract.

Additional air monitoring data will be summarized in the poster from more recent Product Stewardship studies completed by the poster authors (papers from these studies are planned to be presented at the CPI Polyurethanes 2012 Technical Conference).

In summary:

The paper “The Current MDI Industrial Hygiene Data on Spray Foam” found the following:

 • Both indoor and exterior installation of SPF insulation result in airborne MDI concentrations above the occupational exposure limit (OEL) and require applicators to wear personal protective equipment (PPE) including respirators.

• Airborne MDI concentrations decrease rapidly with distance from the applicator. Area air monitoring results collected at specific distances (e.g., 25 feet, 50 feet) from the applicator indicate levels below the OEL.

• Airborne concentrations of MDI shortly after SPF application are non-detectable in most cases.

The information contained within the poster will be helpful in assessing potential exposures to airborne MDI to other construction trades at the work site and in making decisions pertaining to how long after SPF application other trades and homeowners may re-enter the SPF work area。

14.塗布設備から特定の距離にいるポウレタンスプレイホーム作業者の呼吸ゾーンでの浮遊MDI濃度、スプレイ後のMDIに関するレビュー

ポリウレタンホームスプレイ(SPF)は化学物質の混合と反応によりで断熱材になる。一般的なSPFは“A” と “B”からなり、結合したとき数秒でポリウレタンフォームを形成する。

“A”物質ポリメチレンジイソシアネート(pMDI)はこのポスター発表の焦点である。高分子MDIはほぼ同量のMDIモノマー(predominantly 4,4’-MDI)、化学的に2つの環が結合した構造で高分子量のオリゴマーMDI (3環構造以上)を含む。この論文は進行中の化学物質安全管理作業と公開されている論文に見られる浮遊MDIの作業者曝露モニタリングデータをまとめたものである。ポスターは次の情報が含まれる。

・噴霧作業を通してのSPA塗装工の呼吸ゾーンでの浮遊MDI濃度

・噴霧作業を通しての噴霧装置からの距離と浮遊MDI濃度の関係

・噴霧作業終了後の浮遊MDI濃度

それはSPF噴霧を通して現場での大工、電気屋、配管工などの建設作業者に対し共通している。

その他の建設作業者に対する浮遊MDIの潜在的曝露はよく調べられていない。

このポスターで引用されている大部分のデータは、2009年のCPIポリウレタン学会でMark Spence, Spence Consulting LLC によって発表されたタイトルが“The Current MDI Industrial Hygiene Data on Spray Foam”“スプレイホームにおける最新のMDI工業衛生データ”から引用した。この論文を書くため著者が用いた参考文献リストはアブストラクトに掲載した。

加えて、大気モニタリングデータは、ポスター著者(CPIポリウレタン2012工業学会で発表から)によって完成された最近の化学物質安全管理調査からまとめたものである。

まとめ:スプレイホームについての最近のMDI工業衛生データは次の通り;

・屋内と屋外両方において、SPF 断熱材の装置は気中のMDI 濃度が作業暴露限度 (OEL) を超えた結果をもたらし、人口呼吸器を含む個人保護用具 (PPE) を着用することが作業者に必要である。

• 大気中のMDI 濃度は噴霧装置からの距離とともに急速に減少する。特定の領域で収集した空気モニタリングの結果(例えば、アプリケーターから25フィート、50 フィート)はOELレベル以下である。

・SPF噴霧直後のMDI浮遊濃度はほとんどの場合検出しない。

このポスターの中の情報は現場での他の建設作業者にとって、浮遊MDIの潜在曝露の評価に役立つ。

またSPF噴霧後作業者、居住者がSPF噴霧領域にどの位の時間で再入できるかの決定に有用である。

 


15.Characterizing Exposures to Diisocyanates Used in Spray Polyurethane Foam Insulation (SPFI) and Other Polyurethane Products

Carol Hetfield

Corresponding author: Carol Hetfield, US Environmental Protection Agency

Financial disclosure: Nothing to disclose

The Environmental Protection Agency has worked closely with other federal partners to evaluate potential to “isocyanates” during installation of Spray Polyurethane Foam (SPF) insulation. SPF products, which contain isocyanates as key functional ingredients, are widely used in the weatherization of new and existing homes, schools and other buildings. In 2009, US federal representatives met with the Center for Polyurethanes Industry (CPI), the Spray Polyurethane Foam Alliance (SPFA), and individual chemical and product manufactures to outline our concerns and to establish a series of stewardship goals. These goals include the following:

1. Disseminate accurate and comprehensive hazard information.

2. Promote accurate product advertisement and marketing claims.

3. Develop and communicate best practices to adequately address exposures.

4. Advance dialogue on exposure assessment and data gaps, such as:

• Potential for dermal exposures to isocyanates on dust, particles, or other substrates

• Appropriate measurement methods

• The curing rate of isocyanates and factors that influence curing

• Recommendation on safe re-occupancy time for building occupants and post-occupancy ventilation needs.

This poster will focus on the fourth goal and will describe preliminary findings of discussions by federal staff representatives to identify assessment needs and data gaps associated with isocyanate-exposures to workers and consumers during use of SPF. This group identified four key exposure issues and six cross-cutting areas of interest. This poster will further describe the following:

Exposure Issues:

• Determining appropriate methods to assess exposures.

• Characterizing exposures to isocyanates in SPF products.

• Assessing variability of application and environmental factors on potential exposures.

• Identifying best practices to minimize exposures.

Preliminary Findings of Exposure Assessment Needs & Data Gaps:

1. The development and validation of standardized method(s) to measure the availability of reactive isocyanates groups in diverse media during application and re-occupancy periods.

 2. The development of occupational & consumer exposure monitoring studies, including the potential for exposures to other trade workers and building occupants who may remain on-site or return shortly after application.

Studies are also needed to better characterize exposures during the use of DIY consumer products and from product emissions over time.

3. Understanding of curing rates and safe re-entry time after a SPF product has been applied, considering how environmental factors, such as temperature and humidity, affect curing.

 4. Understanding the long-term stability of products installed in the home and whether there is the potential for exposure to substances that might form from thermal or product degradation during maintenance, renovation, deconstruction, and disposal activities, or fires.

5. Characterization of potential for dermal exposures to isocyanates. Is the potential for dermal exposures well characterized using typical industrial hygiene monitoring practices and what is the role of dermal exposures in the mechanistic pathways that result in isocyanate-induced asthma?

 6. Adequacy of current biomarkers & biomonitoring methods to accurately represent evidence of human exposure to isocyanates in workers and consumers.

15.スプレーポリウレタンフォーム(SPFI)に用いるジイソシアネートと他のポリウレタン製品の曝露特性

米国環境保護局は発砲ポリウレタンホーム断熱材の設備を通してのイソシアネートの潜在的な有害曝露の評価について他の連邦機関と密に研究している。主要な機能成分としてイソシアネートを含むSPF製品は新規および既存の家屋、学校などの建築物に広く使用されている。

2009年、米連邦代表は我々の重要関心事項の説明と管理目標の制定のためにポリウレタン工業会 (CPI)、スプレー ウレタン発泡業界(SPFA) 個々の化学製品メーカーと会合した。これらの目標は、

1. 正確かつ包括的な危害情報

2. 正確な製品広告やマーケティング

3. 暴露への的確で最良な対応手法の開発と情報交換

4. 暴露評価とデータ ギャップに関する協議対話の促進

;例えば

• ダスト、粒子、または他の基質の皮膚への暴露の可能性

• 適切な測定方法

• イソシアネートの硬化速度と硬化影響要因

• 建物に居住するための安全な再入居時間と居住後の必要な換気に関する勧告

この発表では、4つの目標に焦点を当て、アセスメントの必要性とSPFの使用中の労働者と消費者へのイソシアネートの曝露に関するデータギャップを確認するために連邦政府スタッフの代表者による予備調査の討論について述べる。このグループは、4つの曝露の課題と以下の6つの横断的分野を確認した。

曝露問題

・曝露評価する適切な方法を決定

• SPF 製造におけるイソシアネートの暴露評価

•潜在的な曝露における適用と環境要因評価の変動

• 最小曝露に対する最良の手法確認

曝露評価の予備調査結果とデータギャップ

1、中間時と再入居期間のイソシアネート類の活性能の測定のための標準手法の検証と開発

2.職業者と消費者曝露モニタリング研究の進展、それには塗布後室内にすぐ戻るか、残る可能性のある建設作業者やビル居住者に対する曝露を含む。

調査はDIY 消費者製品の使用を通して、徐々に排出される製品からの曝露を特徴付けるためにも必要である。

3.SPF製造後の硬化速度と安全な再入場時の理解、硬化後の温度や湿度などの環境因子をいかに考慮するか。

4. 自宅内の製品の長期的な安定性の理解や、保守、改修、解体、処分の活動や火災時に熱や製品の劣化から生成するかもしれない物質の曝露の可能性があるかどうか。

5. イソシアネートの皮膚暴露の可能性の評価。

皮膚曝露の可能性は典型的な産業衛生監視手段で特徴づけられるか、そしてイソシアネート誘発喘息を引き起こすメカニズムにおいて皮膚曝露は何をもたらすか?

6.消費者と作業者のイソシアネートの人的曝露の正確な証拠を示すための最新の生体指標とバイオモニタリングの妥当性。

 


16.Quantifying Isocyanates from Medical Devices and Products: A Pilot Study 

 Youcheng Liu1, Homero Harari2, Dhimiter Bello2, Swati Biswas3, Gillian Franklin1, Scott Raynaud4, Jonathan Nedrelow4, Samavi Ahsan1, David Sterling1

Financial disclosure: Nothing to disclose

1 Department of Environmental and Occupational Health Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Boulevard, Fort Worth, TX 76107, USA; 2 Department of Work Environment, University of Massachusetts at Lowell,One University Avenue, Lowell, MA 01854, USA; 3Department of Mathematical Sciences, University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080; 4Research Administration and Neonatal Intensive Care Unit, Cook Children’s Hospital, 801 Seventh Avenue, Fort Worth, TX 76104. Corresponding author: Youcheng Liu, Department of Environmental and Occupational Health Sciences, University of North Texas Health Science Center School of Public Health, 3500 Camp Bowie

Boulevard, Fort Worth, TX 76107, USA. youcheng.liu@unthsc.edu

Research Purpose: This pilot study was conducted to identify and quantify methylene diphenyl diisocyanate (MDI) species in medical devices and products used in the neonatal intensive care setting.

Relevance: Medical devices and products used in neonatal intensive care units may contain polyurethane and polyurethane foam components. Accurate quantification of isocyanates in these devices and products may further the assessment of potential skin exposures to isocyanates which is relevant to the conference theme.

Participants/Products: The present study does not involve human subjects. Products tested included Wee Pee diapers, foambased arm boards, neonatal SpO2 adhesive sensor, forehead pads, foam-based infant eye protector, Z-flo fluidized positioned cushion, adhesive wound dressing film, Wee Specs phototherapy mask and adhesive tapes.

 Methods: Foams and suspected isocyanate-containing parts of the test items were separated from the rest of the devices. Two small pieces (~0.5 g) from each device or product were sampled and pre-weighed, and then extracted following a standardized protocol.

The foam-type materials were placed into a glass syringe and infused with 10 mL of the 2E-4M MAP in toluene solution for one minute and then extracted from the syringe through a filter. The procedure was repeated ten times.

A second extraction using a new aliquot of 10 mL solution (same procedure) was performed. The solution was evaporated to dryness, reconstituted to 1 mL in acetonitrile and analyzed for extractable MDI species with 2 injections.

Analysis: Chemical analysis for isomers of MDI (4,4’-, 2,4’-, and 2,2’-), MDI trimer, tetramer and pentamer was accomplished using a hyphenated LC-UV-MS/MS analytical method. The limit of detection was 25 pg/mL for 4,4’-MDI, 5 pg/mL for 2,4’-MDI and ~1 ng/mL for trimer. In statistical analysis, quantities (ng) of MDI isomers from 2 injections were averaged. Quantities from two extractions were added together and divided by the sample weight (mg) to derive the concentration for the replicate. Two replicate concentrations were then averaged to calculate the mean for each device or product.

Results: A total of 13 device/product types were analyzed. Mean (± standard deviation: SD) concentration (ng/mg) of 4,4’-MDI ranged from 0.0005 (± 0.0001) for the forehead pad to 0.1401 (± 0.1972) for a diaper. Mean (± SD) concentration of 2,4’-MDI ranged from 0 for a diaper, foam-based arm board, neonatal SpO2 adhesive sensor (sensor portion), forehead pad to 0.0045 for neonatal SpO2 adhesive sensor (foam portion). Mean concentrations of both 4,4’- and 2,4’-MDI for other devices and products were in between the ranges. No 2,2’-MDI, and MDI trimer, tetramer and pentamer were detected 

Conclusions: Overall, 4,4’- and 2,4’-MDI species were detectable in all medical devices and products tested, but concentrations were low. Further quantification on other isocyanates in the devices and products is in progress.

In this study, we present new results on isocyanates extracted from component materials of medical devices and products.

Although MDI species were detectable, it is not clear whether low levels identified will be absorbed through the skin and have a potential clinical or long-term adverse effect. Further studies are needed to evaluate implications.

Funding Acknowledgement: This study was supported by Chook Children’s Clinical Scholars Award.

16.医療機器及び製品からのイソシアネートの定量:パイロット研究

研究目的:このパイロット研究はこのパイロット研究、医療機器および新生児集中治療環境の中で使用される製品のメチレン ジフェニル ジイソシアネート (MDI) 種を定量化する。

医療機器や新生児集中治療室で使用される製品は、ポリウレタン、ポリウレタン フォームのコンポーネントを含む。これらのデバイスと製品のイソシアネートの正確な定量は、イソシアネートの潜在的皮膚曝露の評価を可能にする。それは本会議に関連するテーマでもある。

参加者/製品:この研究は人に関するものは含まれていない。製品テストにはWee Peeおむつ、ホームべースのアームボード、新生児用SpO2接着センサー,頭部パッド、幼児用保護メガネ、Z-flo クッション、外傷接着フイルムドレッシング、Wee Specs 光線治療マスクと接着テープを含む。

方法:テスト品目の フォームとイソシアネートを含む疑いのあるパーツは機器のリストから外した。それぞれの機器あるいは製品から2つの小さいピース(~0.5g)をサンプリングし、重量を測り、次の標準化されたプロトコル法で抽出した。

ホームタイプのものはガラスシリンジに入れ2E-4M MAPトルエン溶液10mlを注入1分間放置し、フィルターを通しシリンジから抽出した。操作は10回繰り返した。新たに分割した10mlを用いた二番目の抽出を行った。溶液は蒸発乾燥し、1 mLのアセトニトリルを加え再調整し2つの注射器で抽出されたMDI種を分析した。

分析:異性体、トリマー、テトラマー、ペンタマーの化学分析はLC-UV-MS/MSで行った。検出限界は4,4’-MDI に対し25 pg/mL, 2,4’-MDI に対し5 pg/mL トリマーに対し ~1 ng/mL であった。統計的分析において、2つのインジェクションからのMDI異性体定量値(ng)を平均した。二つの抽出からの量は一緒にし、再現性を得るためにサンプル重量(mg)を分割した。二つの再現性濃度はそれぞれの機器または製品のために平均した。」

 結果:合計 13 のデバイス/製品種を分析した。4,4’-MDIの平均濃度(± 標準偏差:SD)は額パッドで 0.0005 (± 0.0001)から、紙おむつ は0.1401 (± 0.1972)の範囲であった。

2,4’-MDIの平均濃度は (± SD は紙おむつ、アームボード、新生児 SpO2 接着センサー (センサー部)、額パッド  0から0.0045であった。その他の機器や製品の4,4’- と 2,4’-MDI両方の平均濃度は範囲内であった。2, 2'-MDI、および MDI の三量体、四量体は検出されなかった

結論:全体としては、4, 4'-2、4'-MDI の種はほとんどすべての医療機器と製品テストを検出されなかったが、濃度が低かった。さらに定量化装置と製品の他のイソシアネートについては進行中です

影響: この研究で医療機器の部品材料や製品から抽出されたイソシアネートについて新しい結果を報告した。MDI 種が検出可能なものの、それは低レベルのだが、皮膚を通して吸収され、潜在的な臨床的または長期的な悪影響を及ぼすかどうかは不明です。影響を評価するさらなる研究が必要。




 

17.Isocyanates – Developing ASTM Standards for Measuring Potential

Methylenediphenyl Diisocyanate (MDI) Emissions from Spray Polyurethane Foam

(SPF) Insulation Products Designed for On-site Application in Buildings

Sebroski, J

Corresponding author: John Sebroski, Senior Scientist, Bayer MaterialScience Pittsburgh, PA, US. john.sebroski@bayer.com

Financial disclosure: Scientists employed by company producing isocyanates

This poster will discuss research activities to support the development of ASTM standard practices and test methods to measure potential chemical emissions from spray polyurethane foam (SPF) insulation designed for on-site application in buildings.

Semi-volatile organic compounds such as methylenediphenyl diisocyanate (MDI) may adhere to conventional test chamber walls; therefore, MDI recoveries were evaluated using small and micro-scale chambers.

Three generic foam formulations including closed-cell, open-cell and low pressure kit formulation foams were tested for potential MDI emissions in micro-scale environmental test chambers. A draft ASTM standard practice was developed for spraying, packaging and specimen preparation.

The conclusions from this study can be used as the basis to develop additional ASTM standards on Committee D22 on Air Quality through Subcommittee D22.05 on Indoor Air. These standards may be useful in recommending re-occupancy times for trade workers and residents as well as to assess indoor air quality after installation.

17.イソシアネート:ビルディングの建設現場用に設計されたスプレイポリウレタンフォーム断熱製品からのメチレンジフェニルジイソシアネート排出量測定のためのASTM標準の開発  

このポスターは、ASTM の標準的手法の開発をサポートし、建物の現場対応に設計されたスプレー ウレタン (SPF) 断熱材からの潜在的な化学物質の排出を測定する試験研究活動について説明する。

メチレンジフェニル ジイソシアネート (MDI) のような半揮発性有機化合物は従来のテストチェンアバーでは壁に付着する可能性がある。したがって、MDI の回収は小型なマイクロ スケールのチェンバーを用いて評価した。

クロスセル、オープンセル、低圧キット製剤発泡体含む 3つの汎用発泡製剤は微小環境試験室で潜在的なMDI 排出量を調べた。ASTM の標準的な方法は、噴霧、包装および標本作成用に開発された。

この研究からの結論は、室内空気に関する小委員会 D22.05 を通し室内空気質の D22委員会 に追加するASTM 規格の開発の基礎として使用できる。

設置後の室内空気質の評価土同様な居住者や従業員の再入居時間の推薦に有用である。

 


18.US EPA Chemical Information Gathering, Exposure Assessment Gaps, & Risk Management 

 Katherine Sleasman

Corresponding author: Katherine Sleasman, Environmental Protection Specialist, Environmental Protection Agency,

Washington, DC, US. sleasman.katherine@epa.gov

Financial disclosure: Nothing to disclose

In 2011, EPA released Chemical Action Plans on methylene diphenyl diisocyanate (MDI), toluene diisocyanate (TDI), and related diisocyanate compounds based on concerns for potential exposures to consumers and others using products containing these chemicals。 These plans list regulatory and risk management actions for diisocyanates that the Agency will consider under the authorities of the Toxic Substance Control Act (TSCA).

Under TSCA, EPA has authority to collect from manufacturers and importers records of allegations of significant adverse reactions [section 8(c)] and unpublished health and safety data [section 8(d)]. EPA also has authority to issue information request letters and subpoenas to companies to provide the Agency with necessary data to carry out TSCA (section 11) EPA expects that collecting additional data will aid in better understanding exposure scenarios and filling in information gaps crucial to exposure assessment, and also identifying areas requiring future research.

In accordance with TSCA section 8(e), which requires chemical manufacturers and importers to notify EPA that they have obtained information on any substance or mixture that reasonably supports the conclusion that such substance or mixture presents a substantial risk of injury to health or the environment, EPA has received numerous 8(e) notices from industry for isocyanate compounds.

EPA is also considering sending out information requests to manufacturers and processors of polyurethane products that are applied on-site in a home that react and undergo curing.

The Agency’s interest is in studies or reports related to curing for diisocyanates and the factors that influence curing, such as temperature, humidity, surface application type.

This type of information will better inform the Agency of appropriate re-occupancy time for consumers, residents, self-employed workers, and other building occupants. EPA is also considering initiating section 4 rulemaking to require exposure monitoring studies on uncured diisocyanates in consumer products and exposure monitoring studies in representative locations where commercial products with uncured diisocyanates would be used or present as product emissions.

The methods work that will be described at this conference is important in issuing any test rule. Information collected under TSCA aids the Agency in better understanding complex exposure scenarios that may affect consumers, bystanders, and self-employed workers.  This information may also inform the Agency of the potential uses of polyurethane products by consumers and workers that EPA is not yet aware.

Information on potential exposure scenarios and uses aid the Agency in conducting robust exposure assessments, and to pursue further research necessary to perform a more targeted analysis to assess risks associated with these chemicals. By collecting this type of information and making it publicly available, EPA hopes to promote comprehensive hazard communication, to fill or identify additional data gaps, and to promote research focused on the consumer, self-employed worker, and bystander to better understand exposure and risk.

This poster will describe EPA’s processes and authorities to identify data needs and to collect data, and practices in managing health and environmental risks.

 

18.米国EPA化学情報収集,暴露アセスメントギャップとリスク管理

2011年EPAはメチレンジフェニルジイソシアネート(MDI),トルエンジイソシアネート(TDI)及び関連するジイソシアネート化合物およびこれらの化学物質を含む製品を使用する消費者等の潜在的暴露に関する化学アクションプランを公表した。これらの計画は,ACT(TSAC:毒性物質規制法)当局の下で検討するであろうジイソシアネートの規制とリスク管理をのリストを作る。TSCAのもと、EPA は重大な副作用 [セクション 8(c)] の疑いのある記録、未発表の保健及び安全性データ [セクション 8(d)] を製造者、輸入業者から収集する権限を持つ。

EPAは、また投書の要求に対し情報提供し企業を召喚し TSCA (セクション 11) 遂行必要なデータを準備し、企業を召喚する権限を持つ。

EPA は、収集する追加のデータが曝露シナリオをより理解し、暴露評価に不可欠な情報のギャップを埋める助けとなり、今後求められる研究分野を確定することに期待する。

TSCAセクション8(e)に従って、化学企業や輸入業者にEPAへの報告を義務づけ、健康や環境への被害の潜在的リスクに関する情報を得る。EPAは業界からイソシアネート化合物に関する多くの情報を得る。

EPA はメーカーや室内で反応、硬化するポリウレタン製品を扱う加工業者に情報要求の送信をも考慮している。

EPAの関心事は、硬化に対する温度、湿度、表面材のタイプなどの影響因子とイソシアネート硬化に関する研究と情報である。この種の情報は消費者、住民、自営業の労働者および他の建物の居住者の適切な入居時にとって良い情報となる。EPAはまたセクション4で消費材の未硬化の必要な暴露モニタリングおよび未硬化ジイソシネートとの使用あるいは排出するような化学工場の代表的な場所でのモニタリング調査のルール作りを始める。この会議で述べた手方は何らかの試験的なルールを提供するうえで重要である。TSCA の下で収集された情報は、消費者、第三者、自営業の労働者に影響を与える複雑なばく露のシナリオを理解するうえで当局を支援する。この情報はEPAがまだ入手していない消費者や労働者によるポリウレタン製品の潜在的用途を当局に知らせる。潜在的な暴露シナリオと活用は強力な暴露評価を行ううえで当局を支援し、ついてはこれらの化学物質に関するリスク評価に的を絞ったさらなる研究を支援する。このポスターでは、EPA はデータニーズの確認と収集データ収集のためのプロセスと権限について、そして健康および環境リスク管理の実践について述べる。






国際会議報告目次へ戻る→